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Abstract The electronegativity equalization principle
states that, in its ground state, the electronegativity of every
component in a system is the same. A paradox then arises:
molecular fragments that are very far apart must still have the
same electronegativity, which seems to contradict the com-
mon assumption that spatially separated molecular species
can be described independently. Density-functional theory
provides the tools needed to analyze this paradox at a fun-
damental level, and a resolution is found from the properties
of the exact Hohenberg–Kohn functional. Specifically, there
is no paradox because the electronegativity is not uniquely
defined for separated systems. Instead, there is an “appar-
ent electronegativity” that preserves locality. This may have
implications for the treatment of charge-transfer excited
states. A model for the energy as a function of the number
of electrons is also presented. This model gives some insight
into the utility of the grand canonical ensemble formulation
(at nonzero temperature) and, unlike most previous models,
this model recovers the appropriate behavior in the limits of
infinitely separated and/or weakly interacting subsystems.

Keywords Electronegativity equalization · Electron
transfer · Conceptual density-functional theory · Chemical
potential · Excited states · Fractional electron number

1 Introduction

In 1978, Parr et al. [1] published a paper entitled “Electroneg-
ativity: the density-functional viewpoint” which defined the
electronic chemical potential as the derivative of the energy
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with respect to the number of electrons at fixed molecular
geometry [1],1

µ ≡
(
∂E

∂N

)
v(r)
. (1)

Then, following Itzkowski and Margrave [2] they defined
the electronegativity as the additive inverse of the chemical
potential [1],

χ = −µ. (2)

Using the Hohenberg–Kohn theorems, Parr et al. [1] (hereaf-
ter PDLP) showed that the variational principle for the energy
implies that the electronic chemical potential is constant in
the ground state of a molecule, thereby deriving Sanderson’s
electronegativity equalization principle [3,4]. This demon-
strated that density-functional theory (DFT) provides a natu-
ral language for discussing chemical reactions and chemical
reactivity [5–8] and stimulated further work on using DFT
to elucidate important chemical concepts like regio selec-
tivity [9–11] hard/soft acid/base theory [12–19] aromaticity
[20,21], electrophilicity [22–24], and nucleofugality [6,25–
27]. Even more impressively, DFT-based methodology has
led to entirely new chemical concepts, notably the maximum
hardness principle [28–32] and the recently proposed exter-
nal-potential-based chemical reactivity indicators [33–37].

Many outstanding issues remaining in the treatment of
chemical reactivity, but this paper will concentrate on the

1 Most electronic structure calculations are performed at zero temper-
ature, where Eq. (1) is rigorously correct. In a finite temperature calcu-
lation, the chemical potential is the derivative of the free energy. The
entropic contribution to the free energy is usually negligible, however,
because electronic energy level spacings typically much larger than
the thermal energies of interest to chemists. (Boltzmann’s constant is
3.17 10-6 Hartrees per degree Kelvin!) So Eq. (1) remains an excellent
approximation even for finite temperature DFT.
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very basic foundations of conceptual density functional the-
ory and, in particular, a fundamental problem related to elec-
tronegativity equalization. Suppose two atoms—say, Cesium
and Fluorine—are separated by a distance R, which we take
to approach infinity. The atoms are not interacting with one
another and so they may be assumed to act independently.
The electronegativity equalization principle indicates that the
electronegativity of the individual atoms is equal to a constant
that depends on the entire system, and not just the individual
atoms. For example, adopting the Mulliken approximation to
the electronegativity, the electron affinity for this system is
that of Fluorine, and the ionization potential is that of Cesium,
and so

lim︸︷︷︸
R→∞

χMulliken = ICs + AF

2
. (3)

The electronegativity of atoms and molecules, then, is sub-
ject to a locality paradox2. the electronegativity of the atom
is given by a common value characteristic of the system even
if all the other components of the system are infinitely far
away.

Studying this paradox is the purpose of this paper. Since
the chemical potential is related to the dependence of the
energy on the number of electrons, Sect. 2 discusses how
the energy may be defined for molecules with noninteger
electron number. Section 3 is loosely based on PDLP and
provides a precise mathematical statement of the chemical
potential equalization principle in normal (i.e., nondissoci-
ated) molecules. This review provides the key mathematical
tools for Sect. 4, where the distance between the systems goes
to infinity. Sect. 5 explains why there is no chemical potential
equalization locality paradox and discusses the implications
for charge transfer excited states. Section 6 concludes.

2 The energy as a function of the number of electrons

Because a function that is defined only on the integers is
not differentiable, the definition of the chemical potential in
Eq. (1) requires defining the energy for noninteger numbers
of electrons. For an isolated molecular system at zero temper-
ature, the definition of the energy as a function of the number
of electrons is imposed by the observation that the energy is
a size consistent property of the system [38,39]. In that case,
the energy is a piecewise linear function of the number of
electrons [38–41].

E[v; N ] = (�N� − N )E[v; �N�] + (N − �N�)E[v; �N�]

(4)

2 The author was introduced to this paradox by Max Berkowitz, who
referred to it as the “EPR paradox” of density functional reactivity
theory.

where �N� is the “floor” function, 3 which is the largest inte-
ger that is less than or equal to N and �N� = �N� + 1 is the
“ceiling” function, which is the next integer greater than N .
This energy expression is not differentiable for integer num-
bers of electrons, but the one-sided derivatives (derivatives
from above and below) still exist.

Sometimes it is more convenient to use energy function-
als that are differentiable functions of the number of elec-
trons. Such representations are appropriate, for example, for
reactions in solution, where the solvent molecules provide a
“reservoir” of electrons with a set chemical potential. At a
formal level, it is clear how one can achieve this: one defines
the “reduced” density matrix for the molecule in the “bath”
of electrons and the “effective potential” provided by its sur-
roundings [18,19],

Dmol.
(
x1, . . . ; x′

1, . . .
) = p0 |0〉 〈0| + p1 D1

(
x1; x′

1
)

+p2 D2
(
x1, x2; x′

1, x′
2
) + · · ·

(5)

where |0〉 denotes the vacuum, pk denotes the probability
of observing exactly k-electrons in the molecule, and the
k-electron density matrix describes the k-electron state of
the molecule,

Dk
(
x1, . . . , xk; x′

1, . . . , x′
k
)

=
∑

i

niψi (x1, . . . , xk)ψ
∗
i

(
x′

1, . . . , x′
k
)

∑
i

ni = 1; 0 ≤ ni ≤ 1; 〈ψ j |ψi
〉 = δi j (6)

Both {pk} and {Dk} depend on the molecule’s surroundings.
It is very difficult to evaluate Eq. (5). First of all, one must

compute the complete density matrix for the entire system
(molecule + surroundings). Then one needs to partition the
system’s density matrix into the density matrices of the mole-
cule and its surroundings. (Symbolically, one needs a reason-
able method for performing the decomposition: �mol.+ bath =
�mol.̂ �bath, where ˆ is the antisymmetric “Fock space” ten-
sor product.) There is an inherent arbitrariness in this con-
struction because there are many reasonable procedures for
performing the partitioning [42]. In particularly, there are
approaches based on a Hilbert-space analysis [43–48] and
approaches based on spatial partitioning schemes [49–52].

Approximations with the general form of Eq. (5) are
already known. Cohen has used a grand-canonical ensem-
ble approach in his method based on the “reactivity poten-
tial [53,54]. (His target is an exact approach, while in this
paper the goal is for a conceptual and “pragmatic” approach.)
For our purposes, however, it is useful to see how this sort
of approximation has previously been used in the context
of “conventional” computational chemistry. For example, an

3 This is evaluated by truncating the decimal representation of N.
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approximation like Eq. (5) underlies the quantum mechan-
ics/molecular mechanics hybrid method [55–59] In that case,
the number of electrons in the molecule is fixed (i.e., the only
nonzero term in Eq. (5) is the term with k = Nmol.) and the
only effect of the molecule’s surroundings is to deform (i.e.,
polarize) the molecular wavefunction. That is,

DQM/MM
mol.

(
x1, . . . , xNmol.; x′

1, . . . , x′
Nmol.

)
= ∣∣�0

[
vQM + vMM; Nmol.

]〉 〈
�0

[
vQM + vMM; Nmol.

]∣∣
(7)

where�0
[
vQM + vMM; Nmol.

]
is the ground-state wavefunc-

tion of the molecule in the “effective external potential”
defined by the atomic nuclei in the molecule (vQM(r)) and
effective external potential from the molecule’s surroundings
(vMM(r)) [34,51]. vMM(r) is commonly approximated by the
electrostatic potential of the molecule’s surroundings.

Moving beyond this simple approximation requires deter-
mining the density matrix of the entire system. The density
matrix for the molecule could then be approximated by the
following procedure

Dg.s.
mol.

(
x1, . . . , xNmol.; x′

1, . . . , x′
Nmol.

)

=
∞∑

k=0

⎧⎪⎨
⎪⎩

〈
�mol. + bath

∣∣ ∣∣�0
[
vQM + vMM; k

]〉
× 〈

�0
[
vQM + vMM; k

]∣∣ ∣∣�mol. + bath
〉

× ∣∣�0
[
vQM + vMM; k

]〉 〈
�0

[
vQM + vMM; k

]∣∣

⎫⎪⎬
⎪⎭(8)

=
∞∑

k=0

⎧⎪⎨
⎪⎩

(
Tr

[
�mol. + bath × ∣∣�0

[
vQM + vMM; k

]〉
× 〈

�0
[
vQM + vMM; k

]∣∣])
× (∣∣�0

[
vQM + vMM; k

]〉 〈
�0

[
vQM + vMM; k

]∣∣)

⎫⎪⎬
⎪⎭

Here�mol + bath denotes the wavefunction of the system and
its surroundings. Since this problem is properly treated within
the framework of statistical mechanics, however, it is better to
consider the density matrix of the entire system, �mol. + bath,
as in the second equality. Notice how the QM/MM results are
leveraged to make this simple representation possible. This
is not an exact procedure and, in general, one would need
to include more than just the ground state of the QM/MM
system. Denoting the excited states of the QM/MM system
as �n

[
vQM + vMM; Nmol.

]
, a more accurate representation

would be

D
g.s. + e.s.
mol.

(
x1, . . . , xNmol. ; x′

1, . . . , x′
Nmol.

)

=
∞∑

k=0

K∑
m=0

K∑
n=0

⎧⎪⎨
⎪⎩
(Tr [�mol. + bath

× ∣∣�m
[
vQM+vMM; k

]〉 〈
�n

[
vQM+vMM; k

]∣∣])(∣∣�n
[
vQM+vMM; k

]〉 〈
�m

[
vQM+vMM; k

]∣∣)

⎫⎪⎬
⎪⎭

(9)

Only a few excited states can be included in this representa-
tion because highly excited states of the “molecule” will be
substantially delocalized onto the molecule’s surroundings.
This problem could be avoided if a spatial partitioning was
used instead of the Hilbert-space partitioning.

The refinements in Eqs. (8) and (9) are probably compu-
tationally impossible. One can argue, however, that the main
effect is the “polarization” of the molecule by its surround-
ings. From the perspective of perturbation theory, polarizing
the molecule mixes excited state contributions into ground
state wavefunction and raises the energy of the molecule.
(The total energy decreases, however, because the attractive
interactions of the polarized molecule with its surroundings
are twice as large as the energy destabilization due to the
deformation.) Heating the molecule also causes excited elec-
tronic states to be mixed with the ground state, though in
that case the mixture of excited states with the ground states
is incoherent (giving a “mixed state”) instead of coherent
(giving a “superposition state”). This suggests modeling the
molecular surroundings as a “heat bath” with an effective
temperature and an effective electronic chemical potential,

D
β

e f f
k

mol.

(
x1, . . . , xNmol.; x′

1, . . . , x′
Nmol.

)

=

∞∑
k=0

{
e−βe f f

k (Emol.[vQM+vMM,k]−µk)
(∣∣�0

[
vQM + vMM; k

]〉 〈
�0

[
vQM + vMM; k

]∣∣)}
∞∑

l=0
e−βe f f

k (Emol.[vQM+vMM,k]−µk)
(10)

The effective temperature models how strongly the system
and its surroundings interact and, if it is chosen appropriately,
should give an adequate approximation to the true coupling
between the molecule and its environment:

e−βeff
k (Emol.[vQM+vMM,k]−µk)

∞∑
l=0

e−βeff
k (Emol.[vQM+vMM,k]−µk)

≈ Tr
[
�mol. + bath

∣∣�0
[
vQM + vMM; k

]〉
× 〈

�0
[
vQM + vMM; k

]∣∣] (11)
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In keeping with the preceding discussion, the effective
temperature can be approximated by the requiring that the
“amount of excitation energy due to the effective tempera-
ture” matches the “amount of excitation energy due to molec-
ular polarization.” The chemical potential,µ, that enters into
Eq. (10) is used to ensure that the number of electrons in the
molecule matches the number of electrons in the molecule
obtained from population analysis techniques on the density
matrix of the entire system (molecule + bath). Notice that
the effective temperature will naturally decrease to zero if
the molecule interacts very weakly with its surroundings; for
example, if a two-state model is used to evaluate the effective
temperature, one has

βeff
k = 1

ηk
ln

(
ηk

E (polrztn)
k

− 1

)
(12)

where E (polrztn)
k is the increase in the energy of the k-electron

molecule due to polarization by it surroundings and ηk is the
band gap for the k-electron molecule.

Even Eq. (10) is often too complicated for practical util-
ity. If one is interested in the “generic” reactivity profile of
a molecule in solution, one often models the solution with
a continuum solvation model or even neglects it altogether.
If the molecular surroundings are neglected altogether, then
βeff

k becomes an empirical constant, where a large value of
βeff

k (low temperature) would be appropriate for a molecule
that interacts weakly with its environment (e.g., a molecule
in an Argon matrix) while a small value of βeff

k (high tem-
perature) would be appropriate for a molecule that interacts
strongly with its environment (e.g., a molecule dissolved in
an ionic liquid). If one further assumes that βeff

k does not
depend on the number of electrons, then one recovers the
grand-canonical ensemble originally proposed by Gyftopo-
ulos and Hatsopoulos, [60] extended by Perdew, Parr, Levy,
and Balduz, [40] and later elaborated upon by Chan [61],

Dβeff

mol.

(
x1, . . . , xNmol. ; x′

1, . . . , x′
Nmol.

)

=

∞∑
k=0

{
e−βeff(Emol.[vQM,k]−µk)

(∣∣�0
[
vQM; k

]〉 〈
�0

[
vQM; k

]∣∣)}
∞∑

l=0
e−βeff(Emol.[vQM,k]−µk)

. (13)

Equation (13) is very commonly used when one wishes to
have a smooth and differentiable form for the energy as a
function of the number of electrons [5]. It is a sensible approx-
imation insofar as it can be derived by successive approxi-
mations from the more accurate and rigorous form in Eq. (9).

Once the density matrix is determined, the energy as a
function of the number of electrons can be constructed. One
writes the number operator and the energy operator as inte-
gral kernels,

N̂k =
∞∑

n=0

∣∣�n
[
vQM + vMM; k

]〉 〈
�n

[
vQM + vMM; k

]∣∣

Ĥk =
∞∑

n=0

∣∣�n
[
vQM + vMM; k

]〉

×Emol.,n
[
vQM + vMM; k

] 〈
�n

[
vQM + vMM; k

]∣∣ (14)

and then evaluates the total energy and the total number of
electrons as

N
[
vQM, µ

] = Tr

[( ∞∑
k=0

N̂k

)
�mol.

]

E
[
vQM, µ

] = Tr

[( ∞∑
k=0

Ĥk

)
�mol.

] (15)

Only the “molecular” external potential and the chemical
potentials are variables in these equations; if a QM/MM
approach was taken, the MM potential would be determined
by the identity of the QM system.

When one takes the limit of weak interactions of the mol-
ecule with its surroudings, βeff → ∞ (temperature goes
to zero) and one recovers the piecewise linear formula in
Eq. (4). Because the piecewise linear function is appropri-
ate for molecules in isolation, it will be the basis of much
of the subsequent analysis. The “nonlocality” paradox men-
tioned in the introduction is intimately related to what hap-
pens when molecules dissociate in isolation and there is no
paradox when the molecule’s surroundings serves as a res-
ervoir of electrons, imposing a single well-defined value on
the chemical potential.

3 Chemical potential equalization in ordinary systems

3.1 Functional derivatives

The relationship between density-functional theory and the
chemical potential equalization principle hinges on the varia-
tional principle for the electron density: the density-
functional for the energy,

Ev[ρ] = F[ρ] +
∫
ρ(r)v(r)dr (16)

is minimized by the ground state electron density of the N -
electron system, ρN (r), and it is stationary at this point [62].
In Eq. (16), F[ρ] is the Hohenberg–Kohn functional and
v(r) denotes the external potential. For an isolated molecule,
the external potential is just the attractive potential from the
atomic nuclei.

The Hohenberg-Kohn functional is defined by

F[ρ] = E[v; N ] −
∫
ρ(r)v(r)dr (17)
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for v-representable electron densities. For non-v-
representable electron densities, F[ρ] can be defined by con-
strained search, [63,64] continuity arguments [65], or the
Legendre transform [69]

F[ρ] = sup︸︷︷︸
v(r)

[
E[v; N ] −

∫
ρ(r)v(r)dr

]
(18)

Valone’s density-matrix constrained search, the continuity
method, and the Legendre transform all give identical results
[65,66].There is also a “dual space” formulation that avoids
the v-representability problem altogether [67].

The electronegativity equalization principle is derived by
studying how the electronic energy changes in response to
changes in electron density. This is accomplished using the
functional derivative. The functional derivative of the energy
with respect to the electron density, evaluated at the electron
density ρ0(r), is defined as the function, δEv[ρ0]

δρ(r)
4, that maps

arbitrary infinitesimal changes in the electron density, δρ(r),
to the appropriate change in the energy through the formula

Ev[ρ0(r)+ δρ(r)] − Ev[ρ0(r)]

= d Ev[ρ0] ≡
∫
δEv[ρ0]

δρ(r)
δρ(r)dr. (19)

In Eq. (19), δEv[ρ0]
δρ(r) δρ(r) must be integrated over all space

because δρ(r) is generally nonzero at more than just one
point. When a point perturbation, δρ(r) = εδ(r − r0), is
used, the spatial integration in (19) may be omitted and we
obtain an alternative definition for the functional derivative:

δEv[ρ0]

δρ(r0)
≡ lim︸︷︷︸

ε→0

Ev[ρ0(r)+ εδ(r − r0)] − Ev[ρ0(r)]
ε

=
(
∂Ev[ρ0(r)+ εδ(r − r0)]

∂ε

)∣∣∣∣
ε=0

. (20)

In addition to providing a convenient way to evaluate func-
tional derivatives, (20) provides the basis for an intuitive
understanding of functional differentiation: δEv[ρ0]

δρ(r0)
, the func-

tional derivative of the energy with respect to the electron
density at the point r0, represents the incremental increase
in energy due to increasing the electron density, ρ0(r), by a
small amount at r0.

The definition of the functional derivative is analogous to
the definition of the gradient: the gradient of a function at
the point x0, ∇ f (x0), is defined as the function that maps
infinitesimal changes in the argument of the function, dx, to

4 Strictly speaking the functional derivative must be in the dual space to
the space of density variations under consideration. This mathematical
nuance will not be important here, however.

changes in the value of the function according to the formula

f (x0 + dx)− f (x0) ≡ ∇ f (x0) · dx

=
d∑

i=1

∂ f (x)
∂xi

∣∣∣∣
x=x0

dxi (21)

The second equality in Eq. (21) breaks the gradient and the
change in abscissa into its individual components. A similar
form is obtained when the integral in Eq. (19) is expressed
as Riemann sum; the functional derivative is an infinite-
dimensional analogue of differentiation.

Sometimes a function is non-differentiable: there exists
no vector ∇ f (x0), that suffices to map every possible choice
for dx to the corresponding change in the functional value,
f (x)− f (x0). In this case, the gradient does not exist. In many
cases, however, the directional derivative still exists: that is,
there is a mapping with the form of Eq. (21), but the value of
the gradient depends on the direction of the perturbation,

f (x0+dx)− f (x0)=Dx0 [ f ; dx]= ∂ f (x0+εdx)
∂ε

∣∣∣∣
ε=0

. (22)

The gradient exists when Dx0 [ f ; dx] is a linear functional of
dx.

Similarly, sometimes it is true that the change in the value
of a functional depends on the specific choice of the pertur-
bation in a way that cannot be captured by the expression
for the functional derivative, (19). In many cases, however,
a formula like Eq. (19) can be recovered by allowing the
functional derivative to depend on the type of perturbation:

Ev[ρ0(r)+ δρ(r)] − Ev[ρ0(r)]

=
∫
δEρ0 [δρ; r]dr = ∂E[ρ0 + εδρ]

∂ε

∣∣∣∣
ε=0

. (23)

δEρ0 [δρ; r] is called the variation of the energy with respect
to the perturbation, δρ(r), of the electron density ρ0(r). The
functional derivative exists when δEρ0 [δρ; r] is a linear func-
tional of δρ(r) [68].

3.2 The variational principle and the chemical potential

Recall that at a minimum, xmin, the value of a differentiable
function, f (x) is stationary with respect to small variations in
xmin; equivalently, ∇x f (xmin) = 0. The second Hohenberg–
Kohn theorem implies an analogue of this result [62]: the
ground state energy of system with N-electrons in the exter-
nal potential v(r) is stationary with respect to small number-
conserving variations about the ground state density. Stated
mathematically:(
∂Ev[ρN (r)+ ε · g(r)]

∂ε

)
ε=0

= 0, (24)

where ρN (r) is the ground state density for the N-electron
system with external potential v(r) and g(r) is any
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“conventional” function [69] that is normalized to zero,∫
g(r)dr = 0. (25)

The restriction to variations satisfying (25) is necessary
because the variational principle for the energy only applies
to electron densities with the same number of electrons.
Using (20) and denoting the ground state electron density
of the N + ε electron system as ρN+ε(r), gives

δEv
[
ρN

]
δρ(r0)

≡ lim︸︷︷︸
ε→0

Ev
[
ρN (r)+ εδ(r − r0)

] − Ev
[
ρN (r)

]
ε

= lim︸︷︷︸
ε→0

Ev
[
ρN (r)+ εδ(r − r0)

] − Ev
[
ρN+ε(r)

]
ε

+ lim︸︷︷︸
ε→0

Ev
[
ρN+ε(r)

] − Ev
[
ρN (r)

]
ε

= lim︸︷︷︸
ε→0

Ev
[
ρN+ε(r)+ε

{
δ(r − r0)− ρN+ε(r)−ρN (r)

ε

}]
−Ev

[
ρN+ε(r)

]
ε

+ lim︸︷︷︸
ε→0

E[v; N + ε] − E[v; N ]

ε
(26)

=
⎛
⎝ ∂Ev

[
ρN+ε(r)+ ε

{
δ(r − r0)− ρN+ε(r)−ρN (r)

ε

}]
∂ε

⎞
⎠
ε=0

+
(
∂E[v; N ]

∂N

)
v(r)

=
(
∂E[v; N ]

∂N

)
v(r)

.

Equations (24) and (25) are used in the last step: the term in
braces reduces to a number conserving variation of the den-
sity. Using the definition of the electronic chemical potential
[cf. Eq. (1)] [1],

δEv[ρN ]

δρ(r)
= µ[v; N ]. (27)

Equation (27) states the second Hohenberg–Kohn theorem in
the form of a functional differential equation for the ground
state density. This equation is directly analogous to the func-
tional differential expression of the variational principle for
the wavefunction

δ

〈
�

∣∣∣Ĥ [v;N ]
∣∣∣�〉

〈�|� 〉
δ�

≡ δEv;N [�]

δ�
= 0, (28)

Unlike (28), which holds also for excited state wavefunctions,
(27) generally holds only for the ground state [69,70].

There is a subtle point in the derivation of Eq. (26). The
“number conserving variation” that is set to zero depends on
ε. To make this step more rigorous, expand ρN+ε(r)−ρN (r)

in a Taylor series,

ρN+ε(r)− ρN (r) =
∞∑

n=1

εn

n!
(
∂nρN (r)
∂N n

)
v(r)
. (29)

and then⎛
⎝∂Ev

[
ρN+ε(r)+ ε

{
δ(r − r0)− ρN+ε(r)−ρN (r)

ε

}]
∂ε

⎞
⎠
ε=0

=

⎛
⎜⎜⎝
∂Ev

[
ρN+ε(r)+ ε

{
δ(r − r0)−

(
∂ρN (r)
∂N

)
v(r)

}]

∂ε

⎞
⎟⎟⎠
ε=0

+

⎛
⎜⎜⎜⎝
∂Ev

[ ∞∑
n=2

εn
(
∂nρN (r)
∂N n

)
v(r)

]

∂ε

⎞
⎟⎟⎟⎠
ε=0

(30)

= 0

The first term is zero because it is the change in energy due
to a number-conserving variation of the electron density. The
second term is zero because the derivative of a function of
the form f (ε) = a2ε

2 + a3ε
3 + · · · is zero at ε = 0.

3.3 The constancy of the chemical potential

The chemical potential equalization principle follows directly
from (27). Define the local chemical potential by

µ(r) ≡ δEv[ρ]

δρ(r)
. (31)

If ρv(r) is a ground state density for the external potential
under scrutiny, then µ(r) = µ—the chemical potential is
equalized throughout the molecule. However, if ρ(r) is not
a ground state density, then we can find two points, r1 and
r2, such that µ(r1) < µ(r2). Consider these two points to be
separate systems with

N1 = ρ(r1)dr (32)

and

N2 = ρ(r2)dr (33)

electrons. The system with

N1 + d N = (ρ(r1)+ δρ(r))dr

N2 − d N = (ρ(r2)− δρ(r))dr (34)

has lower energy than the original system; hence, an elec-
tronic system is not stable with respect to perturbations in
the electron density unless the chemical potential is con-
stant throughout the system, µ(r) = µ. This implies that
the chemical potential is constant for any system in its elec-
tronic ground state.
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The preceding derivation presumes that the energy is a
differentiable function of the number of electrons; this anal-
ysis will be valid for a molecule in solution or for a mole-
cule described by a grand canonical ensemble with a nonzero
“effective temperature.” In those cases the chemical potential
of the molecule is a single, well-defined constant.

When one considers a molecule in isolation, the zero-tem-
perature grand canonical ensemble is most appropriate and
the energy is given by the piecewise linear form in Eq. (4).
The energy is no longer differentiable when the number of
electrons is an integer. The one-sided derivatives still exist,
however, and so distinct chemical potentials for electron
addition, µ+, and electron removal, µ−, can be defined:

µ+[v; N ] =
(
∂E[v; N ]

∂N

)+

v(r)

= E[v; N + 1] − E[v; N ] = −A (35)

µ−[v; N ] =
(
∂E[v; N ]

∂N

)−

v(r)

= E[v; N ] − E[v; N − 1] = −I

These expressions will be very important in the subsequent
analysis.µ+ is the appropriate chemical potential for describ-
ing perturbations of the electron density that increase the
number of electrons; µ− is the appropriate chemical poten-
tial for describing perturbations that decrease the number of
electrons. For an isolated molecule that is not dissociated (all
of the atoms are within a finite distance of each other), the
chemical potential from above, µ+, and the chemical poten-
tial from below, µ−, are constants, and do not depend on
the position in the molecule where the electron density is
increased (µ+) or decreased (µ−). Symbolically,

µ+[v; N ] = constant =
(
δEv[ρ]

δρ(r)

)+

=
(
∂Ev[ρ(r)+ εδ(r − r0)]

∂ε

)+

ε=0
(36)

µ−[v; N ] = constant =
(
δEv[ρ]

δρ(r)

)−

=
(
∂Ev[ρ(r)+ εδ(r − r0)]

∂ε

)−

ε=0

The preceding arguments, however, do not extend to the case
where a molecule has dissociated into two subsystems that
are infinitely far apart. This special case—where µ+ and µ−
are not necessarily unique or position-independent—is stud-
ied in the next section.

4 Non-locality and the chemical potential

4.1 The chemical potential paradox

For molecules, the chemical potential equalization princi-
ple is rigorously valid and, as seen in the preceding section,
can be understood without any unusual conceptual calisthen-
ics. When a molecule dissociates, however, a paradox arises.
Consider again the system considered in the introduction:
when a Cesium Fluoride ion dissociates, it dissociates into
the neutral atoms (Cs and F). The chemical potential equal-
ization principle indicates that if you measure the chemical
potential for electron addition, µ+, this is equal to the minus
the electron affinity of the Fluorine atom,

µ+
Cs···F = min

(
µ+

F, µ
+
Cs

) = µ+
F = −AF. (37)

This is paradoxical; it would suggest that the energy that
is released when an electron is added to the Cesium atom
is given by the electron affinity of the Fluorine atom, even
though that atom is infinitely far away. This contradicts our
understanding of physics: the properties of the Cesium atom
should not be affected by the properties of another atom that
is infinitely far away.

There is, in fact, no “nonlocality paradox” for the chemical
potential. For a dissociated molecule, the functional deriva-
tive of the energy with respect to the electron density does
not exist. This means the chemical potential is not uniquely
defined5. Instead, there are different “apparent chemical
potentials” that depend on the way that the system is per-
turbed. If the electron density is increased in the vicinity of
the Cesium atom, then the “apparent” chemical potential is
−ACs, in accord with the locality of the perturbation. If the
electron density is increased in the vicinity of the Fluorine
atom, then the “apparent” chemical potential is −AF, also in
accord with expectations. There is no chemical potential non-
locality paradox because: (a) The chemical potential does not
exist in this case. (b) Instead, there is an “apparent” chemical
potential depends on where one perturbs the system. (c) The
response to a local perturbation of an atom’s electron density
is not affected by another atom infinitely far away.

The preceding facts are based on the size consistency of
the molecule’s properties. That is, as the molecule dissoci-
ates, the properties of the molecule become the sum of the
individual subsystem properties. This is true, in particular,

5 More precisely, for heteroatomic dissociated molecules, Eq. (31) for
the “local” chemical potential does not give a constant, and so it is
impossible to describe the entire system with a single value of the chem-
ical potential for the entire system. In this sense, the chemical potential
of dissociated molecules does not exist.
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for the energy and the electron density:

lim︸︷︷︸
R→∞

ECsF = ECs + EF (38)

lim︸︷︷︸
R→∞

ρCsF(r) = ρCs(r)+ ρF(r) (39)

The Hohenberg–Kohn functional is also size consistent since

lim︸︷︷︸
R→∞

F[ρCsF]

= lim︸︷︷︸
R→∞

(
ECsF −

∫
ρCsF (r) × (vCs (r)+ vF (r)) dr

)

= ECs −
∫
ρCs(r)vCs(r)dr + EF −

∫
ρF(r)vF(r)dr

= F[ρCs] + F[ρF ] (40)

This is a special case of the general result: F[ρA + ρB] =
F[ρA] + F[ρB] is true whenever the subsystem densities are
infinitely far apart [39]. This argument in Eq. (40) is valid
when the electron density of the supermolecule, ρA(r) +
ρB(r), is v-representable. When this is not the case, the same
result can be derived using Lieb’s Legendre transform func-
tional [66]. (However, ifρA(r)+ρB(r) is not v-representable,
then this result does not hold for the Levy constrained search
functional [63]! The undesirability of this “spooky action at
a distance” suggests that the size consistency of F[ρ] should
be imposed as an axiom, which every reasonable definition
of F[ρ] must satisfy [65].)

The chemical potential can be evaluated by measuring the
response of the electronic energy to a small number-increas-
ing perturbation of the electron density that is localized near
the point r0, δr0ρ(r). If the perturbation is near the Cesium
atom, then

EvCs+vF

[
ρCsF(r)+ δrCsρ(r)

] − EvCs+vF [ρCsF(r)]

= F
[
ρCsF + δrCsρ

]
+
∫ (

ρCsF(r)+ δrCsρ(r)
)
(vCs(r)+ vF(r))dr

−F[ρCsF] −
∫
ρCsF(r)(vCs(r)+ vF(r))dr (41)

The size consistency of F[ρ] and the locality of the external
potentials for the Cesium and Fluorine atoms then implies
that

EvCs+vF

[
ρCsF(r)+ δrCsρ(r)

] − EvCs+vF [ρCsF(r)]

= F
[
ρCs + δrCsρ

] + F[ρF]

+
∫ (

ρCs(r)+ δrCsρ(r)
)
vCs(r)dr +

∫
ρF(r)vF(r)dr

− F[ρCs]−F[ρF]−
∫
ρCs(r)vCs(r)dr −

∫
ρF(r)vF(r)dr

= EvCs

[
ρCs + δrCsρ

] − EvCs [ρCs] (42)

=
∫ (

µ+
Cs

)
δrCsρ(r)dr

=
∫
(−ACs)δrCsρ(r)dr

Similarly, if the perturbation is centered on the Fluorine
atom,

EvCs+vF

[
ρCsF(r)+ δrFρ(r)

] − EvCs+vF [ρCsF(r)]

= EvF

[
ρF + δrFρ

] − EvF [ρF]

=
∫ (

µ+
F

)
δrFρ(r)dr

=
∫
(−AF)δrFρ(r)dr (43)

Since the electron affinity of Fluorine is greater than the elec-
tron affinity of Cesium, perturbing the system on the Fluo-
rine atom elicits a larger response than perturbing the system
on the Cesium atom. The change in energy is not a linear
functional of the perturbation. Instead, the change in energy
depends on the specific nature of the perturbation and, in par-
ticular, whether the perturbation is “on the Fluorine atom”
or “on the Cesium atom.” Referring back to the discussion
in Sect. 3.1., the variation of the energy can be evaluated,
but the functional derivative does not exist. Since the func-
tional derivative of the energy with respect to the electron
density, evaluated at the ground state density, is identified as
the chemical potential of the system, the chemical potential
also does not exist. More precisely, the chemical potential of
the system is not unique because the “apparent value” of the
chemical potential depends on the nature of the perturbation.

Figure 1 provides a pictorial representation of the phe-
nomenon. There are two apparent chemical potentials for

N

E
n

er
g

y

Fig. 1 The energy is plotted as a function of the number of electrons for
dissociated Cesium Fluoride; the slope of the lines indicates the chem-
ical potentials. There are different chemical potentials corresponding
to electron addition/removal near the Cesium center (solid lines) or the
Fluorine center (dashed lines).
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electron attachment [Eqs. (42), and (43)] and, similarly, two
apparent chemical potentials for electron removal:

EvCs+vF

[
ρCsF(r)− δrCsρ(r)

] − EvCs+vF [ρCsF(r)]

= EvCs

[
ρCs − δrCsρ

] − EvCs [ρCs]

=
∫ (

µ−
Cs

)(−δrCsρ(r)
)
dr (44)

=
∫
(−ICs)

(−δrCsρ(r)
)
dr

EvCs+vF

[
ρCsF(r)− δrFρ(r)

] − EvCs+vF [ρCsF(r)]

= EvF

[
ρF − δrFρ

] − EvF[ρF]

=
∫ (

µ−
F

)(−δrFρ(r)
)
dr (45)

=
∫
(−IF)

(−δrFρ(r)
)
dr

There is no “chemical potential nonlocality paradox” because
the “apparent chemical potentials” are determined by the
location of the perturbation. Thus the measured response of a
system to a perturbation in its electron density is independent
of the possible presence of other systems, infinitely far away.
The locality of the energy’s response to perturbations means
that it is impossible to define a single chemical potential of
the “supermolecule.” That is, since the functional derivative
of the “supermolecule” with respect to the electron density
is not defined, it is impossible to unambiguously determine
the chemical potential for the entire supermolecule6.

4.2 Relationship to excited-state density-functional theory

For an ordinary molecule, the energy functional, Ev[ρ], is
convex [65,66,71,72]. Because of this, it has only one sta-
tionary value; this single stationary value gives rise to a sin-
gle chemical potential. For a dissociated molecule, there is
no single stationary value for the chemical potential. This
is because the energy functional must be capable of describ-
ing not only the ground state, but also charge-transfer excited
states. For example, because the energy functional can
describe both the cations and the anions of Cesium and Fluo-
rine, it should be able to describe the following charge-
transfer excited states of the Cesium Fluoride molecule:

Cs · · · F

Cs+ · · · F− (46)

Cs− · · · F+

Levy and Perdew showed that if an energy functional can
describe an excited state, then the energy is not stationary
with respect to density perturbations “in the direction of” that

6 From this perspective, there is cannot be a “chemical potential equal-
ization paradox” for a dissociated molecule because, mathematically
speaking, the chemical potential of the dissociated molecule does not
exist!

excited state [69]. Let δr0ρ(r) and δr0 ρ̃(r) denote two differ-
ent perturbations of the electron density around the point r0,
both of which increase the number of electrons by the same
amount. The energy is stationary with respect to number-pre-
serving perturbations of the electron density as long as the
perturbations are localized on one atom. E.g.,

EvCs + vF
[
ρCsF (r)− δrFρ (r)+ δrF ρ̃ (r)

]
−EvCs+vF [ρCsF(r)]

= EvF

[
ρF − δrFρ + δrF ρ̃

] − EvF [ρF] (47)

= (−µF)

∫ (−δrFρ(r)+ δrF ρ̃(r)
)
dr

= 0

However, if the perturbation of the electron density represents
charge transfer, then the energy is not stationary; instead, the
energy increases in proportion to the magnitude of the elec-
tron transfer.

EvCs+vF

[
ρCsF(r)+ δrCsρ(r)− δrF ρ̃(r)

]
−EvCs+vF [ρCsF(r)]

= EvCs

[
ρCs + δrCsρ

] − EvCs [ρCs]

+EvF

[
ρF − δrF ρ̃

] − EvF[ρF] (48)

=
∫
µ+

CsδrCsρ(r)dr −
∫
µ−

F δrF ρ̃(r)dr

= (IF − ACs)

∫
δrCsρ(r)dr

The ground state energy of a dissociated molecule is sta-
tionary with respect to “localized” number-conserving vari-
ations of the electron density but it is not always stationary
with respect to “delocalized” number-conserving variations,
because those variations correspond to charge-transfer exci-
tations, and are thus “unconventional perturbations” of the
ground state [69].

Another way to understand this phenomenon is to note
that all of the charge-transfer “excited states” in Eq. (46)
are in fact ground states for a suitably choice of external
potential where, for example, potential in the vicinity of the
Cesium atom is shifted upwards by a constant, ICs − AF. (In
the new external potential, electron transfer from Cs to F can
spontaneously occur.) Because charge-transfer excited state
densities of the normal atomic potentials (vCs(r)+vF(r)) are
ground-state densities for the shifted atomic potentials, this
is a special case where a “ground-state density functional”
will give the correct result for certain special excited states.

The fact that the functional derivative, δEv[ρ]
δρ(r) , and thus the

chemical potential, does not exist is a direct consequence of
the fact that this energy functional is stationary not only for
the ground state, but also for certain excited states. If one
designs a functional that is stationary for some, or even all,
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excited states, then one has multiple chemical potentials,µ±
kl ,

µ±
kl =

{
E N+1

l − E N
k

E N
k − E N−1

l

(49)

and there are different “apparent chemical potentials” for
different perturbations of the electron density2. For dissoci-
ated systems, the size-consistency of the energy functional
forces it to be able to model the charge-transfer excited states
and the different “apparent chemical potentials” associated
with different perturbations of the electron density reflect this
fact.

The fact long-range electron-transfer is readily modeled
by time-independent functionals in density-functional the-
ory suggests that perhaps time-independent approaches to
excited-state DFT [73–76] should be preferred to time-
dependent approaches for charge-transfer excited states.
Some preliminary indications of how this might work is
already contained in the work of Wu and Van Voorhis [77,
78], where a “constraint potential” is used to ensure that the
“apparent chemical potential” of the electron donor and the
electron acceptor are different. The present work reveals that
the difference in the “apparent chemical potential” of the
fragments arises very naturally when the electron donor and
the electron acceptor are infinitely far apart, and so extending
this behavior to finite separations is a pragmatic, but theoret-
ically justifiable, approximation.

5 Discussion

It should be stressed that there is no chemical potential para-
dox for systems at large, but finite, separations. In this case the
chemical potential is well defined and equalized throughout
the molecule. As an extreme example, consider the Cesium
Fluoride molecule again, but allow the Cesium and the Fluo-
rine nuclei to be R meters apart. As long as the atoms are
well separated, the chemical potential for electron removal
will be well-approximated using the ionization potential of
Cesium,

µ−
CsF ≈ µ−

Cs = −ICs. (50)

This may seem counterintuitive. Suppose one aimed a laser
at the Fluorine atom and ionized it; this produces an excited
state of the molecule, namely Cs · · · · · · F+. (However,
because the atoms are a finite distance apart, Ev[ρ] is not sta-
tionary for this electron density.) After some time, an electron
would tunnel from the Cesium atom to the Fluorine cation and
radiation with energy proportional to the ionization potential
difference, IF− ICs, would be emitted. If the systems are very
far apart, then this relaxation process is very slow. However,
in a time-independent theory, one can only sees the long-
time limit of this process. Thus one observes the chemical

potential that is associated with the Cesium atom even if the
perturbation in question is localized on the Fluorine atom
that is a large (but finite) distance away:

EvCs+vF;R<∞
[
ρCsF(r)− δrFρ(r)

] − EvCs+vF;R<∞[ρCsF(r)]

≈
∫
(−ICs)

(−δrFρ(r)
)
dr (51)

As the internuclear distance increases further, this tunneling
process becomes slower and slower. In the limit of infinite
separation, the tunneling rate is zero and the state Cs · · · · · · F+

emerges as a stationary state of the ionized molecule.
There is not a chemical potential paradox when the sub-

systems are infinitely far apart because there is no chemical
potential in this case (unless the subsystems are chemically
identical). That is, the chemical potential of infinitely sep-
arated subsystems is ill-defined: different perturbations of
the electron density are associated with different “apparent
chemical potentials.” The “apparent chemical potential” for
electron removal from the Fluorine atom is −IF; the “appar-
ent chemical potential” for electron removal from the Cesium
atom is −ICs. There is no “nonlocality paradox” because the
response of a system to a change in electron density does not
depend on other systems that are infinitely far away.

Though this paper focuses on the “locality” of the chemi-
cal potential, some of the results in Sect. 2 may be of indepen-
dent interest. In particular, the heuristic model for the energy
versus the number of electrons helps explain the utility of
the nonzero temperature grand canonical ensemble in den-
sity functional reactivity theory. The approximate model pro-
posed here [cf. Eq. (10)] with an effective temperature that
depends on the extent of molecular polarization has an advan-
tage over many competing theories since it reduces to the
correct “zero-temperature” limit in the appropriate cases: iso-
lated molecules, noninteracting solvents, and infinitely sep-
arated subsystems.
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